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ABSTRACT Coordination in traffic signal control is crucial for managing congestion in urban networks.
Existing pressure-based control methods focus only on immediate upstream links, leading to suboptimal
green time allocation and increased network delays. However, effective signal control inherently requires
coordination across a broader spatial scope, as the effect of upstream traffic should influence signal
control decisions at downstream intersections, impacting a large area in the traffic network. Although agent
communication using neural network-based feature extraction can implicitly enhance spatial awareness, it
significantly increases the learning complexity, adding an additional layer of difficulty to the challenging
task of control in deep reinforcement learning. To address the issue of learning complexity and myopic
traffic pressure definition, our work introduces a novel concept based on Markov chain theory, namely multi-
hop upstream pressure, which generalizes the conventional pressure to account for traffic conditions beyond
the immediate upstream links. This farsighted and compact metric informs the deep reinforcement learning
agent to preemptively clear the multi-hop upstream queues, guiding the agent to optimize signal timings
with a broader spatial awareness. Simulations on synthetic and realistic (Toronto) scenarios demonstrate
controllers utilizing multi-hop upstream pressure significantly reduce overall network delay by prioritizing
traffic movements based on a broader understanding of upstream congestion.

INDEX TERMS Traffic signal control, reinforcement learning, traffic pressure

I. INTRODUCTION

TRAFFIC signal control (TSC) is a cornerstone of in-
telligent transportation systems, designed to optimize

traffic flow at intersections, reduce congestion, and minimize
delays. Traditional methods, such as pre-timed and actuated
control, have been widely adopted [1]–[4], but they often
struggle to adapt to dynamic and complex traffic conditions.
To address these limitations, the concept of traffic pressure
has emerged as a promising metric for adaptive signal
control strategies. Traffic pressure, at the intersection level,
quantifies the disparity in traffic statistics (e.g., vehicle count
or density) between upstream and downstream links [5],
[6], enabling more responsive control approaches [7]. For
instance, PressLight [8] integrated traffic pressure into rein-
forcement learning (RL) agent’s reward design to improve
network efficiency.

Despite these advancements, existing traffic pressure met-
rics remain limited in their spatial scope, focusing solely on
immediate links at individual intersections while ignoring the

broader network context. As the minimal motivating example
shown in Figure 1, at the right intersection, a myopic
pressure-based controller would assign equal green time to
eastbound and southbound flows because it perceives equal
pressures from immediate upstream links. This approach
neglects the longer queues and accumulating congestion
further upstream on the eastbound route. This example is
verified in numerical experiments in Section V. Such myopic
decision-making exacerbates delays and reduces overall net-
work efficiency, highlighting the need for a farsighted metric
that accounts for multi-hop upstream conditions.

The goal of this work is to develop a generalized con-
cept of traffic pressure that integrates multi-hop upstream
conditions. This approach captures a more comprehensive
view of traffic dynamics, allowing controllers to prioritize
traffic movements that most effectively alleviate congestion.
By integrating multi-hop upstream pressure into deep RL
agent design, this work provides a farsighted and adaptive
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framework that mitigates network delays and improves the
overall performance of urban traffic networks.

FIGURE 1: A motivating example to demonstrate the issue
of existing myopic pressure definition and the need for
farsighted multi-hop upstream pressure definition.

The contribution of this work are three folds:

• Generalization of Traffic Pressure: This paper intro-
duces a novel concept of multi-hop upstream pressure
grounded in Markov chain theory, which extends the
conventional myopic traffic pressure to account for
upstream conditions beyond immediate incoming links.
This novel metric incorporates a broader spatial aware-
ness than the traditional counterpart.

• Integration into Deep Reinforcement Learning: The
multi-hop upstream pressure is integrated into the
deep reinforcement learning framework, informing the
agent’s observation and reward spaces. This encour-
ages preemptive queue clearance and more effective
signal timing optimization based on upstream traffic
conditions, addressing the limitations of existing RL
controllers based on traditional pressure definition.

• Comprehensive Validation: The effectiveness of the
proposed approach is validated through extensive simu-
lations on both synthetic and realistic traffic scenarios,
including a Toronto-based case study. Results show
significant reductions in overall network delays, demon-
strating the practical advantages of using multi-hop
upstream pressure for traffic signal control.

II. LITERATURE REVIEW
In this section, we provide literature review on traffic signal
control, and the variations of traffic pressures and their
applications.

A. Multi-intersection Traffic Signal Coordination
a: Traditional Traffic Signal Control
Traditional traffic signal control methods primarily focus on
signal progression to optimize traffic flow. Pre-timed ap-
proaches, such as GreenWave [2] and Maxband [3], synchro-
nize offsets across intersections to reduce vehicle stops in
specific directions. While effective for stable traffic patterns,
these methods lack adaptability to dynamic conditions.

Actuated and classical adaptive systems enhance real-time
flexibility. Actuated control adjusts signals based on imme-

diate traffic detection, but its myopic nature limits network-
level coordination [9]. Adaptive systems like SCATS [10]
and SCOOT [4] expand coordination regionally or hierar-
chically but rely on pre-designed models, reducing their
effectiveness in highly dynamic environments.

b: Reinforcement Learning based Adaptive Control
Reinforcement Learning (RL) has emerged as a promising
approach for adaptive traffic signal control, leveraging data-
driven techniques to optimize signal timings dynamically.
RL-based methods are categorized into centralized, hierar-
chical, and decentralized structures.

• Centralized Control: A single agent observes and con-
trols the entire network [11]. While this approach
achieves network-level coordination, it struggles with
scalability in large networks.

• Hierarchical Control: Multiple levels of agents are
deployed, with upper-level agents providing macro-
scopic instructions and lower-level agents making finer
decisions [12]–[14]. Hierarchical control balances scal-
ability with coordination but requires careful design to
ensure smooth interaction between agent levels.

• Decentralized Control: Each intersection is controlled
by an independent agent [8], making the system highly
scalable. However, the lack of inherent coordination can
lead to suboptimal network performance. Strategies to
enhance coordination include:

– Centralized Training with Decentralized Execution
(CTDE): This approach trains agents jointly using
shared information while maintaining decentral-
ized execution during deployment [15].

– Agent Communication: Communication frame-
works allow agents to exchange local traffic states
and coordinate actions, improving global perfor-
mance. Neighbor RL [16] directly concatenates im-
mediate neighbor intersections’ information. GC-
NRL [17] uses Graph Convolutional Networks
(GCN) to extract features across intersections.
CoLight [18] leverages Graph Attentional Net-
works (GAT) to facilitate communication. eMAR-
LIN [19], [20] embeds immediate neighbor in-
tersections information into an embedding space.
The reward designs of all these methods are only
associated with local intersections, making these
agents less farsighted.

Effective decentralized RL for TSC relies heavily on the
design of agent observations and rewards, as the information
available to each agent directly impacts its ability to make
informed decisions. For example, PressLight [8] integrated
traffic pressure into reward design. However, the vanilla
traffic pressure is limited in its scope to immediate neighbors,
while conditions beyond immediate links are critical for
intersection coordination. In addition, feature extraction via
neural networks for agent communication [18], [19] imposes
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additional computational overhead and learning difficulties
that further complicate the control task based on deep
reinforcement learning. This motivates the exploration of
efficient and effective observation and reward designs that
capture broader traffic conditions. Our approach comple-
ments existing agent communication frameworks that extract
shared information via neural networks.

B. Traffic Pressure and Its Variations
The traffic pressure concept originates from resource reallo-
cation strategies in wireless communication networks [21].
The primary application of traffic pressure is the MaxPres-
sure control policy, which determines phase activation [5],
[6], [22]–[24] or green time allocation [7], [25]–[27] in
decentralized traffic control systems. MaxPressure has also
been integrated into perimeter control strategies [7], [28]
that prevent regional congestion by restricting the inflow to
protected regions. While effective, some implementations of
MaxPressure with phase activation-based action spaces have
raised concerns about confusing phase sequences, which
could frustrate drivers and increase safety risks. Solutions
include fixed or variable cycle times and predefined phase
orders, combined with stability guarantees [26], [29]. Fur-
ther enhancements include integrating vehicle rerouting into
MaxPressure for improved performance [23].

a: Variations in Traffic Pressure Definition
Numerous variations of traffic pressure have been developed,
focusing on specific traffic statistics:

• Queue Density: Incorporating link lengths into pressure
calculation ensures that shorter links with queues are
prioritized over longer links with the same queue length
[25]. This pressure definition is also used in reward
design for RL-based signal control [8].

• Phase Weights: To prioritize specific phases, dynamic
weights are introduced [30], [31], along with adaptive
estimation of turning ratios and saturation flows.

• Delay Time: To improve fairness in waiting times,
traffic delay is included in pressure definitions [24],
[32].

• Travel Time: Recognizing the difficulty in measuring
queues, travel times have been used as proxies for
pressure definitions and tested in both simulation and
real-world settings [27].

• Platoon and Occupancy Prioritization: C-MP incor-
porates space mean speed to prioritize large moving
platoons [33], OCC-MP prioritizes high-occupancy ve-
hicles to improve passenger-based efficiency [34], and
PQ-MP integrates pedestrian queues to account for
mixed traffic scenarios [35].

b: Multi-hop Extensions
Traffic pressure has been extended to multi-hop downstream
applications for perimeter control. For instance, N-MP de-
prioritizes phases when multi-hop downstream link densities

exceed a critical threshold [28], and [36] formalizes multi-
hop downstream pressure grounded on Markov chain theory.
However, these approaches primarily focus on downstream
conditions, neglecting upstream traffic dynamics.

Capturing the potential of upstream traffic is crucial for
preemptively clearing queues. To the best of our knowl-
edge, existing pressure-based works only consider immediate
upstream links, without extending the pressure’s scope to
further upstream conditions. To address the limitation of
upstream scope, this work introduces a novel concept of
multi-hop upstream pressure, grounded in Markov chain
theory. The proposed metric is integrated into the observation
space and reward function of deep reinforcement learning
agents, enabling preemptive signal timing optimization and
effective coordination across intersections.

III. PROBLEM STATEMENT
A. Traffic Signal Control as Decentralized Markov
Decision Processes
In this work, traffic signal control is modeled as a Decentral-
ized Markov Decision Process (DecMDP), which is defined
by the tuple (n,S,A, T ,R, γ), where S = ∪n

i=1Oi is the
system state space as joint observation spaces of n agents,
and A = ∪n

i=1Ai represents the joint action of n agents:

• Observation space Oi: For each intersection i con-
trolled by agent i, the observation space consists of
the multi-hop pressure associated with each phase. For
instance, if an intersection has an eastbound phase
and a southbound phase, then the observation space
is two-dimensional, representing the pressure for the
eastbound and southbound phases, respectively. Math-
ematical definition for observation space can be found
in Section IV-D.

• Action space Ai: For each intersection i controlled
by agent i, the action is defined as the cycle splits,
representing the proportion of green time allocated to
each phase at the intersection.

• Transition probability T : The transition probability
T (s′|s, a) represents the probability of transitioning
from the current global state s to a new global state
s′ after the joint action a = (a1, a2, ..., an) is taken by
the n agents. This probability models the dynamics of
traffic flow in response to changes in signal timings. In
our setting, T is handled by the traffic simulator and is
not exposed to agents.

• Reward Ri: For each intersection i controlled by agent
i, the reward is calculated as the negative sum of multi-
hop potentials over phases. Mathematical definition for
reward space can be found in Section IV-E. This reward
design encourages each agent to clear upstream traffic
as quickly as possible. It is important to note that a
myopic pressure-based reward may lead to undesirable
behavior, such as holding vehicles upstream to mini-
mize the myopic pressure.
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• Discount factor γ: The discount factor γ ∈ [0, 1]
determines the relative importance of future rewards
compared to immediate rewards.

Reinforcement learning is employed to solve this MDP
by training each agent i to learn an optimal policy πi,
which maximizes the expected discounted cumulative reward
Eai∼πi

[∑∞
k=0 γ

kRi(o
(t+k)
i , a

(t+k)
i )

]
. Through repeated in-

teractions with the environment, each agent observes the traf-
fic conditions, selects actions, receives rewards, and updates
its policy to improve long-term traffic efficiency.

In this study, we utilize the Proximal Policy Optimization
(PPO) algorithm [37], a widely used RL algorithm known
for its stability and efficiency.

IV. METHODOLOGY
This section outlines the framework for implementing a gen-
eralized multi-hop pressure model in traffic signal control.
We first clearly define the mathematical notations that are
used throughout this work in Table 1. Then, we model the
traffic network structure with graph representations. Finally,
we define and illustrate the multi-hop pressure and multi-hop
potential metrics, both in its scalar and vectorized forms, and
demonstrate its calculation through a simplified example.

A. Graph Representations of Traffic Networks
The traffic network is represented as a graph described in
Definition 1. To simplify this representation, a supersink Ω
is introduced, consolidating all destinations into a single ab-
stract node. Incorporating the supersink allows the adjacency
matrix to exhibit the properties of a Markov chain transition
matrix, enabling mathematical operations on the adjacency
matrix to be interpreted through the Markov chain theory.
The supersink is characterized by the following properties:

• Zero Queue Density: With infinite capacity, the super-
sink’s queue density is always zero.

• Absorption: Links connected to the supersink are
fully absorbed, and the supersink remains its own
downstream neighbor. This property establishes vehicle
movement on the graph as an Absorbing Markov Chain.

• Binary Turning Ratio: The turning ratio for any link
connected to the supersink or for transitions within the
supersink itself is 1, and 0 for all other cases.

Definition 1 (Graph representation). The graph representa-
tion Ge = (Ve, Ee), where:

• The extended link set Ve additionally includes a super-
sink vertex Ω, i.e., Ve = V ∪ {Ω}.

• The extended edge set Ee additionally includes those
edges reflecting connections to the supersink.

• Edge weight Tuv is the turning ratio from link u to
link v. These weights are derived from real empirical
data or traffic simulations, representing the probability
of traffic flow transitions between links.

To assist understanding of graph representations, an exam-
ple is provided with a simplistic traffic network with 8 links
in Figure 2a, and is mapped onto its graph representation
depicted in Figure 2b, where the turning ratios are labeled
on edges.

(a) A toy network with 8 links.
(b) Graph representation of the toy
network.

FIGURE 2: An example of graph representation for a toy
traffic network. (a) A traffic network with 8 traffic links
indexed from 0 to 7. (b) The weights shown on the edges are
the fabricated turning ratios. The vertex Ω is the supersink,
and the edges in dashed lines represent graph Ge being
extended from graph G.

B. Vehicle Movement as an Absorbing Markov Chain
The movement of a vehicle within a traffic network, guided
by specific turning ratios, can be modeled as a time-
homogeneous absorbing Markov chain. In this model, the
presence of a vehicle on a link l is represented as a random
variable with probability Pr(x = l). The state space of the
Markov chain is finite, comprising |Ve| states, corresponding
to the total number of links in the network. The transition
matrix P corresponds to the weighted adjacency matrix of
the graph Ge, defined as follows:

P =


T11 . . . T1|V| T1Ω

...
. . .

...
...

T|V|1 . . . T|V||V| T|V|Ω
0 . . . 0 1

 =

[
T T∗Ω
0⊤ 1

]
,

(1)

C. Multi-hop Upstream Pressure: A Customizable Metric
for Far-reaching Upstream Traffic Condition
Congestion from immediate upstream links has a more direct
and significant impact than congestion several blocks further
upstream. Therefore, the multi-hop pressure definition needs
to capture the diminishing influence of distant congestion
while still accounting for its cumulative effect on the current
traffic link. To understand the upstream links at higher
hops, we provide an example of upstream links for link 7.
Mathematically, they are written as:

Nu(7, 0) = {7} (2)
Nu(7, 1) = {3, 6} (3)
Nu(7, 2) = {1, 4} (4)
Nu(7, 3) = {0} (5)
Nu(7, h) = {}, h ≥ 4, h ∈ N+ (6)
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TABLE 1: Mathematical notations.

Symbol Definition
Graph Representation Related Notations
V The set of the whole traffic network’s links. This is also the set of graph vertices.
E The set of graph edges. Each edge represents a permissible turning movement.
Ω Supersink, an abstract node that merges all destinations.
Ve The extended set of traffic links, including the supersink compared to V . See Definition 1.
Ee The extended set of edges. See Definition 1.
G = (V, E) The graph representation of the traffic network without supersink.
Ge = (Ve, Ee) The graph representation of the traffic network with supersink. See Definition 1.
Nu(l, h) The set of h-hop upstream links from link l. 0-hop means the link itself, i.e., Nu(l, 0) = {l}.
Nd(l, h) The set of h-hop downstream links from link l. 0-hop means the link itself, i.e., Nd(l, 0) = {l}.

Pressure & Potential Related Notations
Tij [unitless] Turning ratio from link i to j. The sum of turning ratios from link i to all its 1-hop downstream links must be 1:∑

j∈Nd(i,1)
Tij = 1 ∀i and 0 ≤ Tij ≤ 1 ∀i, j

T ∈ R|V|×|V| The weighted adjacency matrix of graph G where the (i, j)-entry is Tij .
P ∈ R|Ve|×|Ve| The weighted adjacency matrix of graph Ge, which is also a Markov transition matrix. See Eq. (1) for details.
Q(l) [veh] Queue length of link l. Default speed threshold in simulator: Queue entering: 2m/s, Queue exit: 4m/s.
Q ∈ R|Ve| The concatenation of queue lengths for links in Ve. The order matches the rows and columns of P.
p(l, h) [veh/km] The pressure with h-hop upstream for link l.
p(h) ∈ R|Ve| The concatenation of h-hop pressure for all links. The arranging order matches that of Q.
ϕ(l, h) [veh/km] The potential with h-hop upstream for link l.
Φup(h) [veh/km] The concatenation of h-hop potential for all links. The arranging order matches that of Q.
Φdown [veh/km] The concatenation of immediate downstream traffic potential for all links. The arranging order matches that of Q.
Lin(i) The set of incoming links for intersection i.
Lin(i, θ) The set of incoming links for phase θ in intersection i.
Θ(i) The set phases in intersection i controlled by RL.
p(θ) [veh/km] Phase pressure for phase θ. See Definition 2.

The scalar formulation of multi-hop upstream pressure,
designed to calculate the pressure for a single link, is less
compact and is thus presented in the Appendix. In contrast,
the vectorized formulation enables simultaneous computa-
tion of pressures for all links in the traffic network. This
vectorized approach significantly improves computational
efficiency compared to processing each link individually.

1) Vectorized Version: Multi-hop Pressure for All Links
Unlike the scalar version could only compute pressure for
one link at a time, the vectorized version can compute
pressures for all links in the traffic network simultaneously,
which accelerates the computation upon implementation
compared to iterating over each link in the traffic network:

Recursive Form:
p(0) = Q−PQ (7)

p(h) = p(h− 1) + (Ph)⊤Q, h ∈ N+ (8)

Unrolled Form:

p(h) =

h∑
h′=0

(Ph′
)⊤Q−PQ, h ∈ N (9)

a: Interpretations of Ph

The term Ph in Eq. (8) deserves meticulous interpretation.
In Markov chain theory, the entry (i, j) in the h-th power
of the transition matrix Ph, denoted as (Ph)ij , indicates
the probability of transitioning from vertex i to vertex j in
exactly h steps. In the context of a traffic network, where
entries correspond to turning ratios, (Ph)ij represents the
probability of a vehicle traveling from link i to link j through
any possible sequence of h links. This implies that link i is
one of the h-hop upstream links of link j, i.e., i ∈ Nu(j, h).

• h-hop influence: The entry (Ph)ij quantifies the influ-
ence of link i on link j after h transitions. It reflects
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the notion that traffic pressure propagates across the
network, extending beyond local effects to distant links.

• Decay of influence over hop: As Ph involves repeated
multiplication of P, the influence decreases with in-
creasing h due to turning ratios being bounded within
[0, 1]. This captures the natural attenuation of conges-
tion effects over distance in a traffic network.

• Pressure contribution: Multiplying [(Ph)⊤]:,j by Q
takes weighted sums on the traffic condition (e.g., queue
density) over all h-hop upstream links exerted on link j.
High congestion at link i, combined with a significant
[(Ph)⊤]ij , results in a substantial contribution to the
pressure at link j. The cumulative contribution over
all 0 to h hops upstream links, formalized as h-hop
upstream potential, is discussed in Section IV-E.

• Independent contribution: The term (Ph)⊤Q captures
the additional pressure exerted on a link by queues
at h-hop upstream links, not included in (h − 1)-hop
upstream links. This isolates the unique contribution
of the h-hop and highlights how congestion propagates
spatially and temporally. Understanding this distinction
is critical for designing controllers that mitigate conges-
tion effectively using multi-hop pressure information.

D. Observation Space Design: Multi-hop Upstream
Pressure for Phases
Definition 2 (Phase Pressure). Given a control plan for an
intersection i, the phase pressure is defined as the summation
of link pressure over all incoming links in phase θ:

p(θ) =
∑

l∈Lin(i,θ)

p(l, h) (10)

The observation oi ∈ Oi for agent i is the concatenation
of phase pressure in intersection i:

oi = ∥θ∈Θ(i) p(θ) (11)

E. Reward Design: Multi-hop Upstream Potentials
Adopted from physics, another perspective for the pressure
in Eq. (9) is the difference of upstream potential and down-
stream potential:

p(h) = Φup(h)−Φdown (12)

where Φup(h) is the h-hop upstream traffic potential and
Φdown is the immediate downstream traffic potential:

Φup(h) =

h∑
h′=0

(Ph′
)⊤Q (13)

Φdown = PQ (14)

To encourage RL agents to clear upstream queues, the
reward for agent i is defined as the negation of the h-hop
upstream potential across all incoming links at intersection
i:

ri = −
∑

l∈Lin(i)

ϕup(l, h) (15)

A higher number of upstream hops in the reward calcu-
lation encourages the agent to preemptively allocate longer
green times to clear upstream queues, facilitating coordina-
tion across intersections. Notably, the number of hops used
for observation is the same as that used in the reward.

Difference to pressure-based reward: For comparison pur-
pose, we also provide pressure-based reward formalization
as the negation of the h-hop upstream potential across all
incoming links at intersection i:

ri = −
∑

l∈Lin(i)

p(l, h) (16)

When h = 0, it is a special case of myopic pressure reward
used in PressLight [8].

V. EXPERIMENTAL SETUP
The proposed traffic signal control scheme is evaluated using
the traffic simulator Aimsun [38]. This section provides
detailed description of the experimental setup in traffic
network architecture and the traffic demand.

A. Tested Scenarios
Both synthetic and realistic scenarios are tested. When
designing scenarios, we provide a wide range of complexity
from the simplest scenario to a complicated one, to verify
that our approach works on diverse scenarios.

1) Synthetic Scenarios
The scenario design breaks down into two parts: traffic
network and traffic demand. We designed two traffic net-
works and three traffic demand saturation levels, resulting in
2× 3 = 6 synthetic scenarios in total.

a: Traffic Networks
Two simplified traffic networks are synthesized, as shown in
Figure 3:

• Network 1x2: A minimal network with two intersec-
tions, designed to validate the effectiveness of multi-
hop upstream pressure, adhering to the philosophy of
minimal viable product in scientific research.

• Network 1x3: An extension of Network 1x2, featuring
three intersections along an arterial road.

Link channelization and phasing scheme: Both synthetic
networks share the following settings: The distance between
adjacent intersections is 100 meters. Each link is single-lane
and restricted to through movements, with no turning lanes.
All intersections are signalized, operating with two phases:
eastbound movement and southbound movement. The cycle
length is 90 seconds, including two 5-second interphases.

b: Traffic demands
The demand saturation level can be categorized into three
levels in ascending order:

6 VOLUME ,



• Undersaturated: 50% of heavily saturated demand.
• Slightly saturated: 75% of heavily saturated demand.
• Heavily saturated: The demand profile is tabulated in

Table 2, where the maximal traffic flow is 2700vph at
the first 30 minutes, greatly exceeding the capacity of
the intersection (approximately 1800vph). The south-
bound flow is at the rightmost intersection only.

TABLE 2: Heavily saturated demand profile for synthetic
networks. Flow unit: vph. Time unit: minute.

Network Direction 0 - 30 30 - 60 60 - 90 90 - 120

Network 1x2
EB 1800 0 0 0
SB 900 0 0 0

Network 1x3
EB 1800 0 1000 0
SB 900 900 900 0

One might question why a constant flow demand is not
used in Network 1x3. The reason is that constant demand can
be effectively managed by pre-timed constant control, thus
a constant demand is insufficient to demonstrate the advan-
tages of multi-hop upstream pressure. Instead, we design a
dynamic demand that no constant controllers is optimal and
highlighting the need for a more adaptive control.

For any of these 6 synthetic scenarios, the optimal con-
troller is expected to allocate longer green times to the
eastbound phase to accommodate greater EB demands at the
rightmost intersection, while the other intersection(s) should
consistently assign the maximum allowed green time to the
eastbound phase, given the absence of southbound flow.

(a) 2-intersection network. (b) 3-intersection network.

FIGURE 3: Tested synthetic arterial networks. Link channel-
ization and phasing scheme are described in Section V-A.

2) Realistic Scenario
Toronto testbed: This testbed simulates a neighborhood
around the intersection of Sheppard Avenue and Highway
404 in Toronto, Ontario, Canada, implemented in the Aimsun
simulator (Figure 4). This neighborhood comprises 12 sig-
nalized intersections, including the pivotal Sheppard Avenue
intersection near a major bus station and the on/off ramps
of Highway 404. Out of these 12 signalized intersections,
4 congestion-prone intersections on the Sheppard Avenue
are controlled by our method, while the rest 8 signalized
intersections experiencing light demand are controlled by the

City Plan, as labeled in Figure 4. The area also includes the
Fairview Mall, which features large parking lots adjacent to
the arterial road. Distances between consecutive signalized
intersections range from 150 to 300 meters. The demand
profile spans the morning period from 7:30 to 10:00 AM,
reaching its peak around 9 AM. The demand consists of
three types of vehicles: cars, trucks, and buses. The buses
are simulated following the schedules of two public transit
service providers: Toronto Transit Commission and York
Region Transit. The demand is calibrated using publicly
available turning movement counts from the City of Toronto.
The linear regression coefficient (R2 = 0.9119) indicates a
good fit of our demand profile to real-world traffic.

a: Baselines
We compare our approach against established traffic control
baselines. These baselines represent different commonly
used traffic signal control strategies, ranging from non-
adaptive pre-timed control to advanced learning-based adap-
tive methods. The following outlines the key baseline meth-
ods used in our evaluation:

• Pre-timed (non-adaptive) Control: Webster method
(Synthetic Scenarios Only): The cycle length and cycle
splits are pre-defined according to historical flows.

• Learning-based Adaptive Control: PressLight (Both
Synthetic Scenarios and Toronto Testbed): As a deep
RL approach, PressLight leverages myopic pressure
in reward design, where the immediate upstream and
downstream traffic statistics are incorporated in pres-
sure calculation.

• Semi-Actuated Control: City Plan (Toronto Testbed
Only): A standard dual-ring NEMA phasing scheme
with semi-actuated control [39]. This control plan is
replicated based on the actual implementation. One may
request the traffic signal timing information from the
City of Toronto 1.

b: Evaluation Metrics
To comprehensively evaluate the performance of our pro-
posed approach, we use three evaluation metrics that reflect
different aspects of traffic statistics:

• Total Time Spent (TTS) (hour): Summation of each ve-
hicle’s travel time spent starting from vehicle generation
to exit, including time in virtual queue.

• Total Queue Time (Include Virtual) (hour): Summation
of each vehicle’s queue time from vehicle generation to
exit. Therefore, time in the virtual queue is included.

• Total Virtual Queue Time (hour): Summation of each
vehicle’s time spent in the virtual queue.

1Request Signal Timing Information: https://www.toronto.ca/
services-payments/streets-parking-transportation/traffic-management/
traffic-signals-street-signs/request-signal-timing-information/
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FIGURE 4: The Toronto network testbed. Four consecutive intersections on the Sheppard Avenue corridor are controlled
by our methods as they encounter large flows. The other eight intersections not experiencing heavy congestion are less
critical, therefore are controlled by the city plan.

VI. RESULTS & DISCUSSION
A. Synthetic Scenario: Network 1x2

FIGURE 5: TTS vs Episode Reward.

Learning Diagnosis: To investigate the relationship be-
tween the original objective (TTS) and surrogate objective
(episode rewards), Figure 5 demonstrates a near-perfect
negative linear relationship (Pearson correlation: -0.997)
between the episode reward defined in Eq. (15), and TTS
in the network. This strong negative correlation indicates
that maximizing the episode reward effectively leads to
substantial reductions in TTS, thereby validating the use
of multi-hop potentials as a reliable surrogate for traffic
efficiency. Minimization of the multi-hop upstream potential
indicates less congested upstream traffic.

The performance comparison between the proposed
method and baselines are shown in Table 3. The proposed
farsighted (1-hop) agent beats the pre-timed Webster method
and the myopic RL method PressLight, under all demand
levels. Webster method has the worst performance as it is
not adaptive to the dynamic demand. The performance of

PressLight is similar but slightly worse compared to our
method with 0-hop upstream in undersaturated and heavily
saturated demand levels, because PressLight – with pressure-
based reward – would deliberately hold vehicles upstream to
achieve the minimization of pressure, whereas our potential-
based reward encourages vehicles to move downstream.

FIGURE 6: The allocated green time for eastbound phase for
the right intersection in Network 1x2. The farsighted agent
assigns longer green time for eastbound phase when queues
exist before time step 30.

Figure 6 illustrates the control action (eastbound phase
duration) over time for the right intersection in the Network
1x2 scenario. The southbound green time is automatically
determined based on the remaining cycle time, as the to-
tal cycle length is fixed. The agent informed by myopic
upstream pressures (0 hop) learned near equal splits for
the eastbound and southbound phases, as the agent only
observed equal queue lengths on immediate eastbound and
southbound links, resulting in suboptimal green time allo-
cation. In contrast, agents informed by farsighted pressures
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TABLE 3: Performance comparison of all methods on synthetic networks

Network Demand Level Method TTS
Total Queue Time
(Include Virtual)

Total Virtual
Queue Time

Network 1x2

Undersaturated

Webster 21.6 6.0 0.0
PressLight 21.0 5.5 0.0

Ours: 0-hop 20.8 5.3 0.0
Ours: 1-hop 20.7 5.2 0.0

Slightly Saturated

Webster 114.8 68.4 23.5
PressLight 91.5 37.3 13.6

Ours: 0-hop 88.6 34.8 15.1
Ours: 1-hop 76.7 36.7 1.7

Heavily Saturated

Webster 270.1 196.8 130.9
PressLight 249.9 197.9 145.5

Ours: 0-hop 242.6 187.6 138.0
Ours: 1-hop 221.5 155.8 64.4

Network 1x3

Undersaturated

Webster 33.6 7.86 0.0
PressLight 30.8 5.82 0.0

Ours: 0-hop 30.1 5.17 0.0
Ours: 1-hop 30.07 5.15 0.0
Ours: 2-hop 30.04 5.12 0.0

Slightly Saturated

Webster 134.4 62.6 24.4
PressLight 99.7 30.6 10.6

Ours: 0-hop 104.0 32.5 12.6
Ours: 1-hop 93.4 24.7 7.4
Ours: 2-hop 85.0 20.5 2.7

Heavily Saturated

Webster 325.2 210.1 132.7
PressLight 311.1 219.1 144.5

Ours: 0-hop 309.3 222.9 140.4
Ours: 1-hop 293.7 199.9 134.4
Ours: 2-hop 272.9 173.3 78.9

(1 hop) as observations and rewards learn better control
policies, consistently assigning greater green time to the
eastbound phase, with an average of 2.7:1 green time splits
for the eastbound and southbound phases, which is crucial
for managing queues efficiently in this scenario.

FIGURE 7: Comparison of average queue lengths over time
between myopic (0-hop) and farsighted (1-hop) control.

Consistent with the control action in Figure 6, the queue
lengths under the myopic and farsighted agents are compared
in Figure 7. The myopic agent results in a sharp increase in

the queue length on the eastbound. In contrast, the farsighted
agent has lower peak queue lengths and more balanced
eastbound and southbound queue lengths. The sudden in-
crease of eastbound phase duration for the myopic agent is
because no new vehicles are generated after timestep 20,
and southbound queues are cleared at timestep 22, thus the
myopic agent can finally assign maximal allowed green time
to clear eastbound queues. This comparison highlights the
advantage of multi-hop upstream pressures and potentials
into the RL agent design that significantly reduce congestion
in tested scenarios.

B. Synthetic Scenario: Network 1x3
Figure 8 presents the impact of upstream hop information on
total time spent (TTS) under three demand levels: (a) under-
saturated, (b) slightly saturated, and (c) heavily saturated:

• In undersaturated conditions (Figure 8a), TTS remains
nearly constant across 0-hop, 1-hop, and 2-hop scenar-
ios, with minimal variation. This indicates that in low-
demand conditions, the inclusion of additional upstream
hop information has no adverse impact on performance.
Since the network is not congested, simpler control us-
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(a) Undersaturated demand. (b) Slightly saturated demand. (c) Heavily saturated demand.

FIGURE 8: TTS vs upstream hops for (a) undersaturated demand, (b) slightly saturated demand, (c) heavily saturated
demand. Farsighted pressures contribute to an improved performance when the demand is saturated, and does no harm to
undersaturated cases.

ing immediate pressures (0-hop) is sufficient to achieve
optimal performance.

• In slightly saturated conditions (Figure 8b), TTS begins
to show variation across the different hop levels. The
1-hop and 2-hop configurations achieve lower TTS than
the 0-hop scenario, with the 2-hop configuration yield-
ing the lowest TTS. This suggests that under moderate
congestion, farsighted setups (1-hop and 2-hop) enable
the agents to coordinate more effectively, reducing
delays by considering upstream traffic conditions.

• In heavily saturated conditions (Figure 8c), the benefits
of using farsighted pressure still exist. The TTS de-
creases progressively from 0-hop to 2-hop. This demon-
strates that when the network is heavily congested,
incorporating additional upstream information better
manages the traffic.

The results indicate that farsighted pressure (1-hop and
2-hop) provides substantial benefits in saturated and heavily
saturated scenarios by enabling more effective green time
allocation based on upstream congestion levels. In contrast,
in undersaturated scenarios, the additional upstream infor-
mation does not affect performance, as immediate pressures
alone suffice to maintain optimal flow. Therefore, multi-
hop pressure control improves traffic efficiency for saturated
conditions without detriment to undersaturated cases.

C. Realistic Scenario: Toronto Testbed
In this section, we discuss the results for the Toronto testbed.

Figure 9 compares the performance of potential-based
reward and the pressure-based reward, previously defined
in Eq. (15) and Eq. (16). Although both PressLight (0-hop
pressure-based reward) and our 0-hop potential-based RL
method are myopic, PressLight exhibits higher variability
(less robustness) in performance. This may be attributed to

its pressure-based reward design, which can unintentionally
encourage the agent to hold vehicles upstream to minimize
local pressure, leading to higher TTS and instability. The
higher variability of RL agents using pressure-based rewards
has also been observed in empirical evaluations [40], [41]. In
contrast, our potential-based reward consistently incentivizes
the agent to release vehicles to downstream links, promoting
smoother traffic flow and reducing variability. In later results
and discussions, we only focus on potential-based reward.

FIGURE 9: Potential-based vs pressure-based reward design.

Figure 10 compares the TTS among our methods and the
City Plan baseline on the Toronto testbed, cross validated
by queue time comparison in Table 4. Compared to the
City Plan (2303 hours), Our RL models using 0-hop and
1-hop upstream setups show higher TTS (4383 and 3214
hours, respectively). The increased total and virtual queue
times indicate that these models struggle due to their myopic
observation and reward. In contrast, the 2-hop and 3-hop
RL models outperform the City Plan, with 6% and 19%
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improvement on TTS, respectively. The results demonstrated
the benefit of incorporating multi-hop upstream traffic, en-
abling a more coordinated signal control.

TABLE 4: Average performance on the Toronto testbed

Method TTS
Total Queue Time
(Include Virtual)

Total Virtual
Queue Time

City Plan 2303 1312 367

PressLight 8116 7501 2809

Ours: 0-hop 4383 2640 1110

Ours: 1-hop 3214 2032 83

Ours: 2-hop 2170 1104 89

Ours: 3-hop 1878 880 3

FIGURE 10: Performance comparison between our methods
and the baseline. The variability comes from 10 different
replications by setting 10 unique random seeds.

The heatmap in Figure 11 highlights the differences in
queue lengths between the City Plan and our RL approach
using 3-hop upstream setup. The compared queue lengths
are average values throughout the whole simulation, better
reflecting the congestion than just comparing on a time slice.
Green roads indicate reduced queue lengths with the RL
approach, while red roads show increased queues.

TABLE 5: Top 4 largest number of trips origins.

Origin Trips (%) Trips (veh)
Highway 404 N 15.5% 4241

Don Mills Road N 12.5% 3415

Don Mills Road S 9.4% 2579

Sheppard Avenue W 9.3% 2555

A key improvement is observed at the Highway 404 south-
bound off-ramp. The RL approach focuses on optimizing
the Highway 404 off-ramp, which is supported by the trip
distribution data in Table 5 that 15.5% of local trips originate
from the Highway 404 North origin, which is also the largest
trip numbers, making it a critical point for signal control.

Overall, most roads benefit from our proposed approach,
indicating improved traffic flow. While the southbound link
connected to the Fairview Mall (second left intersection)
and the westbound link (third left intersection) experience
increased queues as a result of competition among different
signal phases, these increased queues are compensated by the
significant improvement in prioritizing the Highway 404 SB
off-ramp. This farsighted prioritization obtains a substantial
gain rather than merely a trade-off.

Our RL approach also learns intersection coordination:
traffic from the Highway 404 off-ramp, which feeds into
Sheppard Avenue, requires adjacent intersections (the second
and fourth RL-controlled intersections counting from the
left) to coordinate by allocating longer green times along the
arterial road to manage the incoming flow effectively. Our
RL approach achieved this coordination, as the two adja-
cent RL-controlled intersection’s incoming links are greatly
improved on queues, rendered in green.

VII. CONCLUSION
This paper introduces a novel concept of multi-hop upstream
pressure and integrates it to RL agent design to address the
limitations of myopic pressure-based control methods that
focus solely on immediate upstream links. The proposed
multi-hop upstream pressure accounts for an abstracted view
over a greater upstream area beyond the immediate upstream
link, providing a broader spatial awareness for optimizing
signal timings and achieving coordination.

Our experiments, conducted in both the synthetic scenario
and the realistic Toronto testbed scenario, demonstrate that
the RL agents utilizing the multi-hop upstream metric per-
form better in reducing network delays compared to myopic
approaches. Notably, the approach performs exceptionally
well in oversaturated scenarios and remains effective in
undersaturated scenarios, benefiting from multi-hop informa-
tion from further upstream links.

Future work could refine this approach by incorporating
dynamic turning ratio estimation, expanding the scope to
more complex networks, and applying multi-hop pressure to
other traffic control problems, such as congestion pricing and
dynamic perimeter identification.

APPENDIX
Scalar Version: Multi-hop Upstream Pressure for a Single
Link
To gently guide the reader step-by-step, we first review the
vanilla version of traffic pressure, then demonstrate how to
extend it to higher-hop upstream versions.

a: Pressure with 0-hop Upstream:
Adopted from physics, the existing standard traffic pressure
[5] is defined as the difference between immediate upstream
queue length and the summation of immediate downstream
queue lengths weighted by turning ratios. Mathematically,
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FIGURE 11: The heatmap of queue difference between the City Plan and our RL approach with 3-hop upstream setup.
The road-wise comparison is based on the average queue length over the whole simulation time. Roads labeled in green
indicate improved queue length in our approach compared to the City Plan, while roads in red indicate longer queues.

for a link l, its pressure with 0-hop upstream is:

p(l, 0) = Q(l)−
∑

j∈Nd(l,1)

TljQ(j) (17)

Apparently, 0-hop upstream is myopic in terms of knowing
the traffic conditions beyond the link of interest. When
considering further neighborhoods, the concept of 0-hop up-
stream can be extended to multi-hop upstream to account for
a wider range of traffic networks, capturing the cumulative
effect of traffic congestion in neighboring areas.

b: Pressure with 1-hop Upstream:
Compared to pressure with 0-hop upstream, extra traffic
information from 1-hop upstream links is integrated. The
influence of 1-hop upstream links on the current link l is
naturally weighted by the turning ratio from 1-hop upstream
links to link l:

p(l, 1) = p(l, 0) +
∑

i1∈Nu(l,1)

Ti1lQ(i1) (18)

= p(l, 0) + (P:,l)
⊤Q (19)

c: Pressure with 2-hop Upstream:
Similarly, the impact of 2-hop upstream links is added
upon pressure with 1-hop upstream. The congestion at 2-
hop upstream links has less influence than 1-hop upstream
links on the current link l, and is naturally discounted by the

turning ratio from 2-hop upstream links to link l:

p(l, 2) = p(l, 1) +
∑

i1∈Nu(l,1)

∑
i2∈Nu(i1,1)

Ti2i1Ti1lQ(i2)

(20)

= p(l, 1) + [(P2):,l]
⊤Q (21)

d: Pressure with h-hop Upstream:
To generalize, the impact of h-hop upstream links is added
upon pressure with (h − 1)-hop upstream. The decay of
influence from h-hop upstream links to link l is captured
by the turning ratio from h-hop upstream links to link l:

p(h, 1) = p(l, h− 1) +
∑

i1∈Nu(l,1)

∑
i2∈Nu(i1,1)

...
∑

ih∈Nu(ih−1,1)

Tihih−1
...Ti2i1Ti1lQ(ih) (22)

= p(l, h− 1) + [(Ph):,l]
⊤Q (23)
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